A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling

نویسندگان

  • Nico P. Dantuma
  • Tom A.M. Groothuis
  • Florian A. Salomons
  • Jacques Neefjes
چکیده

Protein degradation, chromatin remodeling, and membrane trafficking are critically regulated by ubiquitylation. The presence of several coexisting ubiquitin-dependent processes, each of crucial importance to the cell, is remarkable. This brings up questions on how the usage of this versatile regulator is negotiated between the different cellular processes. During proteotoxic stress, the accumulation of ubiquitylated substrates coincides with the depletion of ubiquitylated histone H2A and chromatin remodeling. We show that this redistribution of ubiquitin during proteotoxic stress is a direct consequence of competition for the limited pool of free ubiquitin. Thus, the ubiquitin cycle couples various ubiquitin-dependent processes because of a rate-limiting pool of free ubiquitin. We propose that this ubiquitin equilibrium may allow cells to sense proteotoxic stress in a genome-wide fashion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors.

Over 25 years ago, eukaryotic cells were shown to contain a highly specific system for the selective degradation of short-lived proteins, this system is known as the ubiquitin-proteasome pathway. In this pathway, proteins are targeted for degradation by covalent modification by a small highly conserved protein named ubiquitin. Ubiquitin-mediated degradation of regulatory proteins plays an impor...

متن کامل

A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure.

The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is es...

متن کامل

UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination.

Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 ...

متن کامل

The E3 Ubiquitin Ligase Activity of Trip12 Is Essential for Mouse Embryogenesis

Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/m...

متن کامل

Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking.

The ubiquitin-proteasome pathway regulates the turnover of many transcription factors, including steroid hormone receptors such as the estrogen receptor and progesterone receptor. For these receptors, proteasome inhibition interferes with steroid-mediated transcription. We show here that proteasome inhibition with MG132 results in increased accumulation of the glucocorticoid receptor (GR), conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2006